APP NOTE: Compare Compensation Pressure Accuracy
In any laboratory, having key lab supplies is almost as important as having the major equipment. Choosing a reputable supplier of these necessary supplies is as important as having quality laboratory supplies when you need them. WPI wants to be your partner in early drug discovery, and we stock a wide variety of lab supplies, many of which can ship the same business day. Having a variety of lab supplies ready to ship makes us a dependable research partner. Here are some of the popular supplies that we keep on hand to meet your needs for your upcoming experiment
APP NOTE: Common Applications of the EVOM™ Auto System
EVOM™ Auto is the latest generation of WPI’s automated transepithelial or transendothelial electrical resistance (TEER) measurement system. Using the same proven technology in the EVOM™ Manual and REMS, combined with a new multi-electrode array, software interface and control system, it delivers our fastest workflow solution while improving TEER measurement accuracy:
APP NOTE: TEER Technology Enables an Optimized in vitro Workflow for Drug Discovery
In vitro models have employed two common methods to quantify changes in endothelial barrier integrity: transepithelial/transendothelial electrical resistance (TEER) and tracer compound permeability.1 TEER is a non-invasive method that quantifies changes in electrical conductance to measure confluency and barrier integrity. Tracer compound permeability uses molecules of defined molecular weights to measure the size exclusion capacity of cell barriers (e.g., 4 kDa FITC-dextran or FD4).1 Using the EVOM™ Manual (EVOM-MT-03-01) with the EndOhm TEER electrode and cell culture permeable supports, this application note describes how to non-invasively evaluate endothelial barrier integrity after cytokine treatment and provides a method to identify vasoactive compounds that have the potential to induce vascular injury. Tracer compound permeability studies are combined with TEER evaluation to elucidate treatment-induced impacts on both intercellular junctions and paracellular transport (Fig. 1).
APP NOTE: Observation of Mitosis using Celloger® Mini Plus
In the process of ‘cell cycle’, cells grow and divide into two genetically identical daughter cells. It is regulated by a complex signaling pathway which keeps cell homeostasis by regulating cell division and DNA duplication1. On the other hand, because cancer cells grow and divide indefinitely out of cell cycle control, anti-mitotic drugs are used to suppress abnormal proliferation of cancer cells2. In particular, Nocodazole is known to be a representative anti-mitotic drug for cancer treatment, and it has the characteristics of disturbing microtubule dynamics during cytoplasmic and nuclear division3,4.
APP NOTE: Analysis of Nocodazole-Induced Cytotoxicity Using Celloger® Mini Plus
Cytotoxicity refers to the degree of damage to cells. caused by chemical substances or physical factors. Measuring it through cytotoxicity assay is essential for drug development and biological research. Cells undergo complex signaling pathways that causes various cell death processes such as apoptosis, necrosis, and necroptosis. However, most cytotoxicity assays are measured at the endpoint that makes it difficult to study the dynamic response of cells to drugs.
APP NOTE: Using Celloger® Mini Plus to Observe Morphological Changes and Phagocytic Activity in Macrophage Cell Line
As white blood cells responsible for immune function are suspension cells that travel along blood vessels, immunology studies often use various suspension cell lines originating from white blood cells. Dealing with suspension cells, unlike adherent cells, slight movement of a plate when locating it on the microscope causes the cells to float. Aside from the problems caused by temperature and CO2 instability, it is in fact not possible to use a traditional microscope to monitor cells in real time. Therefore, in order to stably monitor suspension cells, a live cell imaging device such as Celloger® Mini Plus that operates inside an incubator is essential1. In addition, with Celloger® Mini Plus, the camera inside the system moves to capture the images of cells in multiple positions to keep the cell sample in a steady state instead of having a movable stage with a plate on it. When the suspension cells were monitored both by Celloger® Mini Plus and microscope, imaging with Celloger® Mini Plus was more stable compared to using a microscope in which several cells were out of focus (Figure 1).
WPI's NanoFil: Gas Tight Injection System in Animal Research
Are you looking for a microliter or sub-microliter and high precision syringe that holds needles as small as 36 gauge (G), in addition to having the capability to connect to quartz tubing?
WPI’s NanoFil is the answer. We offer NanoFil syringes with NanoFil needles or the option to connect the NanoFil syringe to quartz tubing to use in research studies, mainly involving sub-microliter volume injections into animal tissues.
Low Flow Dampening Kit for a Pump
A calibrated BLPR2 on the LabTrax24T was used to record the results. This is a plot of both pumps on the #14 tubing at 50 RPM into a 22 gauge needle. The flow is estimated to be 9 ml/min at 50RPM.
Using a DAM50 for EEG Recordings in Rodents
A low-noise amplifier like the DAM50 is an excellent choice for EEG recording in rodents. WPI's amplifiers were engineered for the bio-medical researcher. While 20-30μV of noise is common in bio-amplifiers, WPI’s DAM series amplifiers generate 0.4μV RMS (root mean squared) at 0.1-100Hz. (That’s equal to about 2μV peak to peak.) This setup shows one way such recordings could be made. The RC1 electrode works well for rats, and the EP1 is more suitable for mouse cranial application.
Zebrafish Microinjection using the UMP3/Micro4
Watch how researchers from the University of Chicago inject adult zebrafish using a 10μl NanoFil microsyringe controlled by a Micro4 controller and UltraMicroPump III (UMP3-1 includes one UMP3 pump and a Micro4 contro
Zebrafish Microinjection Technique from JoVE
Chiara Cianciolo Cosentino, at the University of Pittsburgh, describes how she uses intravenous microinjections of zebrafish larvae to study acute kidney injury in this JoVE video. You can watch this video on JoVE. WPI equipment shown in this video includes:
WPI Instruments featured in JoVE Video on Cross-Pollination
WPI surgical instruments were recently featured in a JoVE video that demonstrates a new method for cross pollinating grasses.
Microinjection in Zebrafish Otocytes
Researchers at the University of Michigan are using WPI's PV820 for injecting a morpholino solution into the lumen of the otic vesicle of 1-day old zebrafish embryos. Then, they use electroporation to introduce mif and mif-like morpholinos into the developing inner ear tissues.
Front Filling Nanofil Syringe
In this video, Mike Pizza demonstrates how to front fill a Nanofil syringe using MicroFil.
APP NOTE: Using a Microscope with a Stereotaxic Frame
You can use the PZMIV stereo microscope with a stereotaxic frame as shown in the image below. This setup shows a PZMIV-BS. The U-frame Base Plate (502045) is shown, but most stereotaxic frames can be used in this way. Choose a stereo microscope objective that allows you plenty of room to work. For example, the 0.5X objective has 187mm working distance, or the 0.32X objective has 296mm working distance. You could also add a Z-LITE-Z186 illuminator. If necessary, use a 5 to 10 lb.counter weight on the boom stand base to prevent the microscope from tipping.
APP NOTE: Microinjection Setup 101
When it comes to setting up microinjection systems, the options appear endless. The pictures below give some broad suggestions on how you might set up your own system. Keep in mind that many parts are interchangeable depending on your needs or preferences.
APP NOTE: Isolated Stimulation Explained
The term stimulation refers to the delivery of energy of some kind to a biological tissue in order to elicit an observable response.
Although the energy used in stimulation may be chemical, thermal, mechanical or electrical, this discussion will focus on electrical stimulation. Electrical stimulation of biological tissues involves the delivery of current and voltage to the stimulation site. The two quantities are related by Ohm's law: